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Abstract

Recently, transformer-based networks have achieved state-of-the-art performance in
computer vision tasks. In this paper, we propose a new cascaded MTL transformer-
based framework, termed MTL-TransMODS, that tackles the moving object de-
tection and segmentation tasks due to its importance for Autonomous Driving
tasks. A critical problem in this task is how to model the spatial correlation in
each frame and the temporal relationship across multiple frames to capture the
motion cues. MTL-TransMODS, introducing a vision transformer to employ the
temporal and spatial associations, and tackle both tasks using only one fully shared
transformer architecture with unified queries. Extensive experiments demonstrate
the superiority of our MTL-TransMODS over state-of-the-art methods on the Kit-
tiMoSeg dataset (56). Results show 0.3% mAP improvement for Moving Object
Detection, and 5.7% IoU improvement for Moving Object Segmentation, over the
state-of-the-art techniques. Qualitative results can be found on the following link.

1 Introduction

Moving object detection (MOD) or segmentation (MOS), as a fundamental task in the computer
vision community, attracts more and more attention in recent years due to its potential application
in video surveillance, activity recognition, autonomous driving, etc. In this work, we learn both
tasks jointly, moving object detection and segmentation (MODS), to exploit the constructive relation
among them. MODS is a challenging task due to illumination, dynamic background changes, and the
relative motion (4) (21) (24) (50) (51) (54) of surrounding moving objects w.r.t the visual sensors that
are planted on a moving robot or vehicle. Besides, MODS could be formulated as two dimensional
problem; spatial dimension and temporal dimension, where modeling the spatial and temporal
relationship jointly is challenging.

For many years, ConvNets have been the architecture of choice in computer vision in general, and for
performing object detection and segmentation tasks in particular. Recently, transformers have shown
a great success compared to ConvNets in capturing the spatial relation in various applications, in
classification (15) (76) (10) (19) (6) (31), in detection, (5) (72), in segmentation (79) (42) (74) (75)
and in tracking (65) (43). Witnessing the great success of transformers in handling the sequential data
(68), which is firstly introduced in the natural language processing (NLP) domain where the sequential
input is the sequence of words, therefore, we proposed a new transformer-based architecture for
MODS, that jointly exploits the temporal relationships and the spatial relationships.

Multi-task learning (MTL) (12) (78) (13) approaches offer advantages like improved data efficiency,
reduced overfitting through shared representations, and fast learning by leveraging auxiliary infor-
mation. Recent related fields, i.e., meta-learning (16) (70), transfer learning (81) (66) (37) (26), and

Machine Learning for Autonomous Driving Workshop at the 35th Conference on Neural Information Processing
Systems (NeurIPS 2021), Sydney, Australia.

https://we.tl/t-qyThVmI1Bl


continuous learning (40) (52) (53) are mimicking the learning process for babies by integrating prior
knowledge across different tasks. For example, babies in their entry-level are struggling to learn basic
tasks from scratch like walking and talking (41) (3) (38), but once they learn the simple tasks they
build upon them while learning more complex ones, such as playing football. By analogy, neural
networks require such numerous training datasets (48) (60) and computation time for each task to be
learned from scratch, neglecting the useful learned representation from other related tasks. However,
learning multi-task is suffering from the negative transfer phenomenon (34) (77) (17) (7) (73), where
one or more tasks dominate other tasks by destroying the learned representations.

Therefore, in this paper, we tackle two challenges. i.e., 1) How to effectively learn joint repre-
sentations for object detection and segmentation using Unified Transformer (UT) architecture? 2)
How to adequately utilize the temporal and spatial relationships since it is crucial for moving object
recognition?

A novel entirely shared transformer encoder-decoder architecture with Unified Queries (UQ) is
proposed to tackle the first challenge. To tackle the second challenge, the encoder module is adopted
from the one-time step MODETR (44), and extended to be more generic by exploiting previous
time-stamps while encoding motion cues, moreover, spatio-temporal transformer architecture is
proposed equipped by a novel Temporal Positional Encoding (TPE) module to adequately utilize the
temporal and spatial correlations. Accordingly, our main contributions can be summarized as follows:

• We proposed a new end-to-end MTL transformer-based framework for moving object
detection and segmentation, termed MTL-TransMODS, that effectively learn a joint repre-
sentations for both tasks while exploiting the spatial and temporal correlations.

• We propose a novel way for sharing the learnable representations based on transformer
architecture across different tasks via learning robust Unified Queries (UQ).

• Through detailed analysis along with ablation studies, we examine the internal behavior and
validity of our method.

• We verify the effectiveness of MTL-TransMODS on KittiMoSeg dataset (56), and achieves
new state-of-the-art accuracy.

The rest of the paper is outlined as follows, first, we discuss the related work, followed by the details
of the proposed model. Then we present detailed ablation studies to settle on the best architectural
design, and finally, illustrate the experimental setup for the various experiments we conducted for
every contribution.

2 Related work

Our novel architecture draws success from several areas, including Vision transformers, Spatio-
Temporal correlation, and Multi-Task-Learning.

Transformers for classification. ViT (15) exploits the self-attention operation which is the core
of the transformers that produce global awareness of the given input data that overcome the lo-
cal interactions of convolutions. Therefore, ViT (15) replaces the CNN backbone and propose a
fully transformer-based architecture. T2T-ViT (76) using an adaptive tokenization technique, a
layer-wise Tokens-to-Token (T2T) transformation block, instead of the simple tokenization used in
(15). CrossViT (6) exploits the multi-scale features by combining image patches of different sizes.
Transformer-iN-Transformer(TNT) (19) utilizes both patch-level and pixel-level representation, to
fully utilize the intrinsic structure information inside each patch. CPE (10) dynamically generates
learnable positional encodings conditioned on the local neighborhood of the input tokens. LocalViT
(31) adds locality to vision transformers by introducing depth-wise convolution into the feed-forward
network. Swin (35) proposes a hierarchical transformer and shifted windows to simplify the trans-
former complexity by applying the self-attention on the non-overlapped windows. Twins (9) propose
a spatially separable self-attention (SSSA) module, which is composed of two types of attention
operations, i.e., local-grouped self-attention (LSA), and global sub-sampled attention (GSA).

Transformers for detection. DETR (5) and Deformable-DETR (80) treat the input image as a
sequence of spatial features that enables the extension of the traditional transformer, previously used
in NLP (68), in computer vision problems, by outputting the final set of predictions directly from
the global image context. PVT (72) uses a progressive shrinking pyramid to reduce computations
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Figure 1: Overview of our proposed Spatio-Temporal Cascaded-MTL Transformer-based Model
Architecture for Joint MOD and MOS. Unified transformer produces unified queries that represent
both tasks simultaneously. Foreground/Background Discriminator generates class-queries from the
produced unified queries.

of large feature maps to achieve a high output resolution on different tasks, e.g., object detection,
semantic, and instance segmentation.

Transformers for Segmentation. TransVOS (42) extends DETR from a 2d attention transformer
to a 3d attention to exploit both spatial and temporal relationships, which suffers from extensively
computations. SETR (79) adopts ViT as a backbone while the decoder is based on the progressive
up-sampling segmentation head like FCN (36). SegFormer (75) adapt DETR encoder to output
multi-scale features and propose lightweight decoder using only stacked MLP blocks. Trans2Seg
(74) adopts DETR’s architecture (5) by using the same transformer encoder-decoder that relies on
self-attention mechanism, and exploits the produced attention map from self-attention operation to
produce segmentation masks. Segmenter (64) build on ViT (15) by obtaining a label for each patch.

Spatio-Temporal methods. ConvNets and LSTM mixed architectures, like ConvLSTM (59) have
been used to handle both the spatial and temporal nature of videos, like in Moving Object Detection
(MOD) (61; 62), and Instance Moving Object Segmentation (46) tasks. Recently, the Space-Time
Memory (STM) based approaches (27) (30) (32) (39) (49) (58) capture the temporal information and
neglecting the spatial relationships of pixels inside each frame. In contrast, siamese-based approaches
(28) (18) (8) (71) (29) (2) compute spatial attention across the template patch against search region.
The temporal relationships are not fully utilized since they ignore the dependency among all the
previous frames. STEm-Seg (1) models the video data directly as 3D spatio-temporal volume which
increases the model complexity. Recently, fully attention transformers (68) are replacing RNN,
LSTM, and GRU in NLP. This motivates us to jointly capture the spatial and temporal relationships
as they are crucial for MODS using an efficient, and powerful transformer architecture.

MTL-Transformer-based. UniT (22) propose Unified-multi-Modal Transformer model to learn
seven tasks from different domains. UniT (22) uses two decoders, one for vision tasks and another
one for the NLP tasks where each task learns its queries; task-specific query embedding. In contrast,
our proposed architecture learns two vision tasks, i.e., detection and segmentation, using a joint
encoder-decoder transformer and unified queries. Thus, we have the edge by proposing a fully unified
transformer architecture across different tasks and showing its effectiveness.

3 Spatio-Temporal Cascaded-MTL Transformer

In this section we will quickly summarize the vanilla detection transformer (5) (Sec. 3.1), then
illustrate our novel cascaded-MTL approach that learns object detection and segmentation jointly.
Our approach is divided into three main parts; 1) Novel formulation for the segmentation task
w.r.t transformer architectures (Sec. 3.2). 2) Cascaded-MTL-Transformer model (Sec. 3.3). 3)
Spatio-Temporal transformer architecture (Sec. 3.4).
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Figure 2: Comparison between different MTL approaches based on transformer architecture, where
the blue modules indicates the shared representations between both tasks.

3.1 Vanilla detection transformer

The spatial one-step encoder-decoder architecture (5), termed as DETR but we will refer to it as
vanilla detection transformer, mainly consists of three main steps, i.e., feature extraction, spatial
transformer, and query transformer.

Features extractor consists of an arbitrary CNN backbone, followed by a 1× 1 convolution layer to
transform the channels dimension from C into the hidden dimension d, where d<C, that transforms
the input image I ∈ RH1×W1×C into feature map m′ ∈ RH×W×d. Then the feature map m′

is flattened across the spatial dimensions to be m ∈ RHW×d. Transformer Encoder (TE) treats
the spatial features m as a sequence of HW spatial features, each of dimension d and producing
E ∈ RHW×d. Transformer Decoder (TD) maps the spatial features E into object features based on
learn-able object queries Q ∈ RNq×d, where Nq are the number of object queries. Finally, the object
queries Q is feed into object detection head to produce the final boxes.

3.2 Segmentation transformer

Unlike the existing segmentation transformer-based architectures (42) (79) (75) (64), which only
exploit the transformer encoder to provide a global receptive field in contrast to CNN’s local receptive
field, then use CNN decoder to produce segmentation masks, we adopt DETR’s architecture (5) by
formulating the semantic segmentation task as a problem of dictionary look-up table, and adapt DETR
decoder by representing each category using a set of learnable queries while DETR’s queries are
representing each object. Therefore, we term DETR’s queries detection-queries Qd ∈ RNq×d, where
Nq are the number of object queries that represent the maximum number of objects in the scene,
which is varying from one dataset to another. And term the segmentation-queries Qs ∈ RNcls×d,
where Ncls are the number of class queries that represent the number of different categories in the
dataset. By following this formulation for the segmentation task, we are able to follow the vanilla
detection transformer pipeline (Sec. 3.1) to produce class-aware queries driven from the produced
object queries. Several ways of generating the class-aware queries Qs are discussed in details in the
following section (Sec. 3.3) and demonstrated in Fig. 2.

3.3 Cascaded-MTL-Transformer model

Learning segmentation queries that represent object categories can be achieved by using a dedicated
TD, as shown in the upper part at Fig. 2, where only the CNN encoder and TE are shared across the
two tasks. The first TD could be termed as detection decoder as it produces object queries Qd, while
the second TD could be termed as segmentation decoder as it generates class-aware queries Qs, that
encodes the class category.

Another approach is to use one shared TD to produce the two tasks queries Q ∈ R(Nq+Ncls)×d in a
one-shot, which later are been split into two sets; detection queries Qd and segmentation queries Qs,
as shown in the middle part at Fig. 2. Inspired by these two approaches, an important question arises,
can we learn both tasks more efficiently by sharing further modules?
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To answer this question, we propose our novel MTL approach based on the Unified Queries (UQ) by
decomposing the segmentation task into two related sub-tasks,i.e. 1) Discriminating objects. 2) Mask
generation. After discriminating the objects in the scene, we generate the segmentation masks by
predicting the category-wise label for each pixel guided by the discriminated objects. Formulating
the segmentation task in this way allows us to fully utilize the learned representations in the detection
task while learning the semantic segmentation task by cascading the segmentation task over the
detection task.

Interpreting the cascaded analogy to the transformer based neural network, discriminating objects
can be regarded as detection queries Qd, or generally object queries Q ∈ RNq×d as shown in the
lower part in Fig.2 and in Fig.1. By aggregating the learnable object queries Q to the detection output
head, the bounding boxes bp are generated, where bp ∈ RNq×5, where each box is represented by the
object center cx, cy , width W , height H and class type cls.

A matcher is used to refine the generated boxes bp and produce refined boxes bp′, as shown in the
upper section of Fig. 1. At the training phase, the bipartite matching (5) (63) is applied on bp

producing refined bounding boxes bp′ ∈ RN
′
q×5, where N

′

q is the number of the object queries that
best match the ground truth boxes, and their indices K. At the inference phase, the refined bounding
boxes bp′, and their indices K are produced based on a thresholding process using the produced class
confidence Cconf..

To exploit the learned representations from the detection task, a foreground/background discriminator
is proposed to discriminate the learned object queries Q to NCls class-based queries QC based on
Eq. 1, and background object queries Qb based on Eq. 2, where NCls is the number of classes in
dataset. As shown in Eq. 1, the class-based queries are produced by conditional summation over the
learned object queries Q, based on the desired class C and the selected indices K.

QC =

Nq∑
i=1

1{C=Cls[C]}1{i=K[i]}Q[i], for C = 1, 2, ..., NCls, : QC ∈ R1×d (1)

Qb =

Nq∑
i=1

1{i6=K[i]}Q[i], : Qb ∈ R1×d (2)

The foreground object queries Qf ∈ RNCls×d is produced by concatenating the class-based queries
Qf = [Q0, Q1, .., QNCls ]. The foreground/background discriminator maps the learned queries
from objects space to classes space. To generate the final segmentation masks, we concatenate the
foreground and background object queries producing Q‘ ∈ R(NCls+1)×d. Finally, as shown in Fig. 1,
a simple segmentation head is used to transform the transformer-decoder output, Qs, into final mask
Mp ∈ RNcls×H1×W1 , that consists of stacked up sampling and reshaping layers. This requires to set
d = H ×W , so that we can perform the reverse mapping that we did in the CNN backbone.

3.4 Spatio-Temporal transformer architecture

Our novel MTL approach could be used for the standard object detection and segmentation, however,
we have explored a more challenging task, i.e., moving object detection and segmentation. Therefore,
we adapt the vanilla 1-step MODETR (44) to exploit the spatial and temporal correlations across T
timestamps instead of using only 1-step, as shown in Fig. 3. Accordingly, We encode the motion
information through two ways, i.e., 1) Through the Optical Flow (OF) using FlowNet 2.0 (23), where
the fusion between appearance (RGB) and motion (OF) is performed on the feature level. 2) By using
multiple streams of T time stamps. As shown in Fig. 3, in contrast to MODETR (44), which uses two
TEs, one for the image branch and another one for OF branch, we only use one unified transformer
instead of using T transformer encoders (T-TE) for each timestamp.

As only one unified transformer is used, two variants of temporal features aggregation are studied, as
shown in Fig. 4, where we can early aggregate the spatial features over the temporal dimension in the
TE, or defer the temporal aggregation to the TD to be done late over the object queries.

Early temporal aggregation. In this approach, the list of T spatial features L are aggregated and
flattened into m ∈ RHW×Td, and fed to the TE that performs multi-head self-attention over this
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Figure 3: Comparison between our Spatio-Temporal model architecture, on the left, and MODETR
(44), on the right.

Figure 4: Comparing the two variants of the Spatio-Temporal Transformer model architecture. The
ealry variant on the left, and the late variant on the right.

spatio-temporal map of object features traces. The TD will perform multi-head query-to-spatio-
temporal features traces attention producing Q ∈ RNq×Td.

Late temporal aggregation. In contrast to the early aggregation, The TE is formed on T Spatial
Transformer Encoders, as shown in the right part of Fig. 4, each resulting also in a list of T spatial
features E ∈ RHW×d. Finally, the TD is formed of two levels of decoders: 1) Spatial Query
Decoders which are a list of T decoders, each resulting in a list of T query features Q ∈ RNq×d,
which are then reshaped into an aggregated tensor over the temporal dimension to be Q ∈ RT×Nqd.
2) Temporal Query Decoder, which transforms the Spatio-temporal queries traces Q into the final
query features, by first flatten it such that Q ∈ RTNq×d, then using multi-head self-attention.

Temporal positional encoding. Transformers are a replacement to recurrent models, due to their fast
parallel encoding nature (68). However, this comes at the cost of losing the sequential information
of the input. To overcome that, positional encoding embedding was proposed in (68). DETR (5)
incorporates the spatial positional encoding module to encode the spatial positional information
despite both spatial and temporal positional encoding is crucial to encode the pixels of the moving
object across time. Accordingly, we have introduced a temporal positional encoding (TPE) module,
which is added just before the temporal aggregation takes place, being it early across the spatial
features traces, as shown in the left part of Fig. 4 or late across the object queries traces, as shown in
the right part of Fig. 4.
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Motion cues mAPTotal AP50 AP75

RGB-only 23.1 42.2 23.7
RGB + RGB 25.3 47.2 24.5
RGB + OF 33.9 59.3 37.2

Table 1: Detailed comparisons on the effect
of the motion features.

Temporal Aggregation mAPTotal AP50 AP75

N/A 33.9 59.3 37.2
Early 36.1 62.3 43.4
Late 34.0 61.1 36.1

Table 2: Studying the effect of the temporal
aggregation.

4 Experiments

In this section, we first describe the used datasets. After that, we specify the experimental setup,
including all hyper-parameters, and hardware specifications. Then, we perform controlled ablation
experiments to settle on the best design for our proposed module and assess its sub-modules. Finally,
we evaluate the performance of the proposed Cascaded-MTL-TransMODS, on the KittiMoSeg dataset
(56).

4.1 Dataset

There is a huge limitation in publicly available datasets regarding moving object detection. (62)
provides 1300 images only with weak annotation for MOD task. (69) provides 255 annotated frames
only on KITTI dataset, and 3475 annotated frames on Cityscapes dataset (11). Thus, We use the
extended version (56) of the publicly available KittiMoSeg dataset (62). (56) dataset consists of
12919 frames. The image resolution is 1242× 375, and the labels determine whether the object is
moving or static, includes the object bounding box and the motion mask.

4.2 Implementation details

We initialize our backbone networks with the weights pre-trained on ImageNet (14), then train the
whole network for 30 epochs on COCO dataset (33) while freezing the backbone during the first
ten epochs. In all our experiments, ResNet-50 (20) was used as a backbone. Our network is trained
with Adam optimizer (25) with a scheduled learning rate that is decreased from 1e−3 to 1e−5, the
whole network is end-to-end trained with learning rate exponentially decayed. We train a total of 200
epochs, using a warm-up learning rate of 1e−3 to 5e−3 in the first five epochs, and a learning rate
exponentially decayed from 1e−3 to 1e−5 in the rest of epochs. 512× 512 resolution images have
been used across all the experiments, and T , which represents the number of temporal frames that we
are using, is set to two. Our approach is implemented in Python using the PyTorch framework on two
PCs with Intel Xeon(R) 4108 1.8GHz CPU, 64G RAM, Nvidia Titan-XP.

4.3 Ablation studies and analysis

4.3.1 Motion cues

Previous works on MOD (61; 62) indicate that input features can have a strong impact on the results.
In particular, features holding motion cues can be of high impact. Thus, we evaluate the best input
features at each time step, where we compare RGB, RGB+RGB, and RGB+OF options. In this setup,
we use the vanilla 1-step DETR architecture. The results are in favor of the RGB+OF setup as shown
in Table 1.

4.3.2 Early Vs. Late temporal aggregation:

In this setup, we evaluate the two architectural alternatives in Figure 4. For the sake of comparison, we
fix the time window T = 2, the number of queries Nq = 100 and the transformer hidden dimension
d = 256. Results are shown in Table 2. Both results of early and late architectures improve over the
vanilla one-step DETR that doesn’t contain temporal aggregation. However, the early architecture
provides a significant improvement of 5% mAP.
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T mAPTotal AP50 AP75

1-Step 33.9 59.3 37.2
2-Steps 36.1 62.3 43.4
4-Steps 36.1 62.5 43.1

Table 3: Quantitative results showing the ef-
fect of the temporal window size T.

TPE mAPTotal AP50 AP75

W/O 36.1 62.3 43.4
With TPE 38.7 63.1 44.6

Table 4: Quantitative results showing the ef-
fect of TPE.

Shared parts mAPTotal AP50 AP75 IoU

B-E 36.8 60.7 40.6 79.6
B-E-D 42.8 64.9 50.1 80.9

B-E-D-Q 42.2 64.9 49.3 85.2

Table 5: Showing the effect of increasing the
joint representations between tasks.

Method mAPTotal AP50 AP75 IoU

MOD 41.3 65.5 47.1 N/A
MOS N/A N/A N/A 78.9
MTL 42.2 64.9 49.3 85.2

Table 6: Comparing the Detection, Segmenta-
tion, and MTL architecture.

4.3.3 Effect of TPE:

Building on the results of early temporal aggregation in Table 2, we perform this comparison on the
early temporal setup as shown in the left part of Fig. 4. As expected, results in Table 4, show 2%
mAP improvement over the variant without TPE.

4.3.4 Effect of the temporal window size T:

We evaluate the effect of the increased window size, for T = 1, 2, 4. Results in Table 3 show
increased performance with the increase of T . However, a saturation barrier is hit at T = 4.

4.3.5 MTL Shared representations

We evaluate the effect of increasing the shared modules and shrinking the task-specific modules
across different tasks. Starting with sharing only the encoders,i.e., CNN backbone and the transformer
encoder(shared B+E), going through sharing the transformer decoder besides the encoders(shared
B+E+D), and ending with sharing the CNN backbone and the full transformer architecture which
means both tasks have the same learnable object queries(shared B+E+D+Q), which is termed as
Unified Transformer (UT). The results mentioned in Table 5 show an improvement in the results as
the joint part between the two tasks increases. The three approaches are demonstrated in Fig. 2.

4.3.6 MTL vs. individual models evaluation

To show the value of our MTL architecture, we compare it against the individual tasks models. We
refer to the segmentation model as MOS, the detection as MOD and the joint as MTL in Table 6. In
the three architectures we have an early spatio-temporal aggregation, Sec. 3.4.

4.4 Bench-marking against state-of-the-art

We evaluate our proposed cascaded MTL-Transformer network on the KittiMoSeg dataset (56). We
have re-run the whole mentioned architectures in Table 7 on our input image resolution,i.e., 512×512,
except for the ones which have the † symbol that indicates the reported accuracy are adopted from
the original paper and their input image size is 1224× 256. To be able to compare against Trans2Seg
(74), we replace its simple encoder with our spatio-temporal encoder described at Sec. 3.4.

Our proposed approach outperforms the SOTA with 0.3% for detection task and with 5.7% for the
semantic segmentation task. The reasons behind our improvement is two fold. 1) Exploiting the
shared representations between both tasks while utilizing the spatial and temporal correlations. 2) The
cascaded MTL approach provides a better representation for motion as the learnable object queries
are shared between both tasks, which enables the segmentation head to leverage from the detection
features.
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Method mAPTotal AP50 AP75 IoU

DarkNet53 (RGB + OF) 35.24 59.87 38.20 72.0

MODNet(62) ResNet50 (RGB + OF) 32.04 61.60 29.47 71.8

(RGB + OF) † N/A N/A N/A 74.2

FuseMODNet (56) (RGB + LIDAR) † N/A N/A N/A 75.3

LSTM-Late N/A N/A N/A 69.5

RST-MODNet(55) LSTM-Multistage N/A N/A N/A 71.4

LSTM-Multistage † N/A N/A N/A 76.3

MPNet (67) † 31.52 59.92 32.21 69.3
VM-MODNet (57) † N/A N/A N/A 77.6

Monocular Instance Motion Segmentation (47) 40.60 59.21 49.28 79.5
MODETR (44) 39.29 63.70 49.15 N/A
ST-DETR (45) 41.90 64.80 50.03 N/A
Trans2Seg (74) N/A N/A N/A 78.9

MTL-TransMODS (ours) 42.23 64.90 49.30 85.2

Table 7: Quantitative evaluation on KittiMoSeg dataset (56) for our proposed cascaded joint detection
and motion segmentation network.

Figure 5: MTL output and attention maps visualization across different timestamps. a) shows the
MTL output for both detection and segmentation tasks. b) shows the attention maps.

4.5 Qualitative results

Figure 5 demonstrates the MTL output, and attention maps visualization across different timestamps,
where row (a) shows the MTL output for both detection and segmentation tasks, row (b) shows the
attention maps for the learnable object queries. More qualitative results can be found on the following
link.

5 Conclusion

In this paper, we presented a Spatio-Temporal cascaded-MTL Transformer-based architecture for joint
MOD and MOS that showing the state-of-the-art performance on the KittiMoSeg dataset (56). We
compared the MTL setup against the individual tasks, which shows 1% mAP improvement on MOD
and 6.3.% IoU on MOS. The cascaded MTL approach suggests a clear advantage on the dimension of
fast inference in the shared MTL architecture over the individual models, which will almost double
the inference time and the memory footprint over the shared model, besides the advantage on the
dimension of the accuracy where it outperforms the SOTA with 0.3% for detection task and with
5.7% for the semantic segmentation task.
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